Humán artériák falának mechanikai viselkedésének numerikus meghatározása időfüggő terhelésre különböző modellezési szcenáriók esetén

Tóth Brigitta Krisztina^{*}, Magyar Huba, Lakatos Ilona Éva

Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Tartószerkezetek Mechanikája Tanszék

DOI: 10.17489/biohun/2023/1/585

Absztrakt

Mivel a szív- és érrendszeri betegségek világszerte a vezető halálozási okok közé tartoznak, az érfal mechanikai viselkedésének lehető legpontosabb leírása egészségügyi szempontból is fontos. E tanulmányban az arteria carotis interna mérettartományába eső érszakaszok nemlineáris anyagú falának időfüggő terhelésekre adott mechanikai válaszának tisztán áramlástani, és egy- ill. kétirányú kapcsolt szimulációval történő meghatározását végeztük el. A modellalkotás megfelelőségét az idealizált geometrián végrehajtott szimulációk igazolták és az eredmények összhasonlítása validálta az alkalmazott eljárást (2-3% hiba). A modell alkalmazhatóságának illusztrálására nyilvános adatbázisból származó valós érszakasz röntgenangiográfia-felvételeinek digitális feldolgozásával készített modellen is elvégeztük a szimulációt hiperelasztikus anyagmodell alkalmazásával, amelyhez az anyagi paramétereket mért adatokra történő görbeillesztéssel nyertük.

Kulcsszavak: érfal mechanika, numerikus modell, kapcsolt áramlástani szimuláció, hiperelasztikus anyagjellemző

NUMERICAL DETERMINATION OF NONLINEAR MECHANICAL RESPONSE OF HUMAN ARTERY WALLS TO TIME DEPENDENT LOADING USING VARIOUS MODELLING SCENARIOS

Abstract

Since cardiovascular diseases are among the leading causes of death worldwide, the most accurate description of the mechanical behavior of the vascular wall is also important from a medical point of view. In this study, the mechanical response of the blood vessel wall in the size range of the internal carotid artery with non-linear material to time-dependent loads was determined using purely flow-related, and one- or two-way coupled simulation. The adequacy of the model creation was verified by the simulations performed on the idealized geometry and the comparison of the

*Levelező szerző elérhetősége: Budapesti Műszaki és Gazdaságtudományi Egyetem, Építőmérnöki Kar, Tartószerkezetek Mechanikája Tanszék, H-1111 Budapest, Műegyetem rakpart 3. E-mail: *toth.brigitta@cmk.bmc.hu* Tel.: +36 1 463-4044

Citáció: Tóth BK, Magyar H, Lakatos IÉ. Humán artériák falának mechanikai viselkedésének numerikus meghatározása időfüggő terhelésre különböző modellezési szcenáriók esetén. Biomech Hung. 2023; 16(1):17-24.

Beérkezés ideje: 2023.02.19. Elfogadás ideje: 2023.06.22.

results validated the applied procedure (2-3% error). To illustrate the applicability of the model, we also performed the simulation on a model created by digital processing of X-ray angiography images of a real blood vessel section from a public database using a hyperelastic material model, for which the material parameters were obtained by curve fitting to the measured data

Keywords: vessel wall mechanics, numerical model, coupled flow simulation, hyperelastic material properties

1. Bevezetés

A szív- és érrendszeri betegségek (mint például ateroszklerózis, stroke és aneurizmák) a vezető halálozási okok közé tartoznak világszerte. Az érfal mint biológiai anyag, valamint a patológiás érszakaszok (pl.: aneurizmák, plakkok, stenosis stb.) mechanikai viselkedésének a jelenleginél pontosabb műszaki leírása egészségügyi szempontból fontos lehet. Az ilyen jellegű kutatások a jövőben hozzásegíthetnek az érfal tönkremenetelének előrejelzéséhez és a keringési rendszerrel kapcsolatos diagnózisok pontosabb meghatározásához. A szövetek terhelésekre adott válaszának egyre pontosabb ismeretében a jövőben növelhető a humán szervezetbe ültettet (pl.: sztentek) vagy orvosi eljárások során alkalmazott eszközök biokompatibilitásának mértéke.

Az érben áramló vér, nyomást és/vagy termikus terhelést gyakorolhat az őt körülölelő vastagfalú csőszerkezetre, az artéria falára. Ezek a terhek olyan jelentős szerkezeti deformációt okozhatnak, hogy az kölcsönösen visszahat magára a folyadéktér áramlására is. Mérnöki szempontból, ez egy nagy alakváltozásokat végző, hiperelasztikus, gumiszerű cső szilárdtestmechanikai vizsgálatának és a benne áramló vér folyadékdinamikai vizsgálatának kétirányú kapcsolását jelenti.

Egy- és kéttengelyű húzó-szakítóvizsgálatok eredményei álltak rendelkezésünkre¹ humán *arteria carotis interna* (ACI) mintán. Az ACI belső átmérője és az érfal vastagsága a szakirodalomban fellelhető *in vivo* és *in vitro* mérési eredmények alapján, a biológiai anyagokra jellemző igen nagy szórással rendelkeznek, az alany nemétől és korától függően.²⁻⁴

A kapcsolt rendszer másik alkotója, az áramló folyadék, a vér. A keringési rendszer véráramlását a szívből kiinduló pulzálás, a folyadék egyedi mechanikai és áramlási tulajdonságai, valamint az erek szerkezete és mechanikai tulajdonságai határozzák meg. A keringési rendszerben a folyadék áramlása számos tényezőtől függ, de az áramlás lamináris és turbulens tulajdonságainak figyelembevételével jellemezhető. A legtöbb forrás 2000-2300-as Reynolds-számig laminárisnak tekinti a véráramlást, míg egyes kutatások arra mutatnak rá, hogy az 1000-es Reynolds-szám átlépésével a vérben ugrásszerűen megnő a turbulens áramlás kialakulásának valószínűsége.⁵ Turbulencia alapvetően a keringési rendszer olyan helyein fordul elő, ahol a Reynolds-szám viszonylag magas, például a szívkamrákban és az felszálló aortában. Ezen felül turbulens áramlás alakulhat ki az áramlástér elágazásaiban vagy a nem egyenes szakaszokon, a műtéti implantátumok miatti szabálytalanságokból és érrendszeri megbetegedésekből adódóan. A véráramlás egy bizonyos nyírófeszültség fölött nemnewtoni-folyadékként jellemezhető, azonban a vér nemnewtoni tulajdonságai főként kis átmérőjű erekben lehetnek meghatározóak.5

A kapcsolt rendszer numerikus szimulációja az ún. *fluid-structure interaction* (FSI) módszerrel lehetséges, amely a két alrendszer kölcsönhatását is figyelembe veszi. Érrendszerek hidrodinamikai szimulációjával több forrás is foglalkozik.⁶⁻¹⁴

Célunk egy olyan, az érfal és a vér áramlásának kölcsönösen egymásra gyakorolt viselkedését leíró modell megalkotása, amely élettanilag helyes fizikai modell megalkotását teszi lehetővé, valós geometriával rendelkezik, valamint alkalmas az orvostudomány területén alkalmazott diagnosztikai módszerek továbbfejlesztésére. A következő fejezetek a megalkotott modell ismertetését, valamint az elvégzett szimulációk eredményeit és értékelését tartalmazzák.

2. ANYAGOK ÉS MÓDSZEREK 2.1. Anyagmodellek

Az érfal anyaga nagy alakváltozásra képes, nemlineáris feszültség-nyúlás-összefüggéssel leírható anyag, amelynek modellezésére több lehetőség van. A kis alakváltozások tartományában a görbe kezdeti szakaszának érintője egy lineárisan rugalmas anyagmodell rugalmassági modulusát definiálja. A biológiai szövetekre jellemző a nagy szórás, ezt a mérési adatokra illesztett görbék is tükrözték, ugyanis a rugalmassági modulus néhány 10 kPa értéktől az 1 MPa nagyságrendig terjedt. Pontosabb leírás hiperelasztikus anyagmodellek használatával érhető el. Az anyagmodell alakváltozásienergia-függvényét az alakváltozási tenzor invariánsával írjuk fel. A jobboldali Cauchy-Green alakváltozási tenzorból származtatott deviátoros alakváltozási invariánsok a következő alakban írhatók fel (1).

$$\begin{split} \bar{I}_{1} &= \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2}, \\ \bar{I}_{2} &= \lambda_{1}^{2}\lambda_{2}^{2} + \lambda_{2}^{2}\lambda_{3}^{2} + \lambda_{3}^{2}\lambda_{1}^{2}, \\ \bar{I}_{3} &= \lambda_{1}^{2}\lambda_{2}^{2}\lambda_{3}^{2}. \end{split}$$
(1)

Összenyomhatatlan anyag esetén $\bar{I}_3=1$. Az érfal szilárdtestmechanikai modellezésénél, célszerű olyan anyagmodell választása, amellyel jól közelíthetőek a több inflexiós ponttal rendelkező feszültség–megnyúlás függvénnyel jellemzett anyagok. Ebből a megfontolásból az ötparaméteres Mooney–Rivlin anyagmodellt választottuk. Az alakváltozásienergiafüggvény a deviátoros alakváltozási invariánsokkal a (2) alakban adható meg, ahol $c_p c_2,...,c_5$ adott anyagra jellemző konstansok, amelyeket a numerikus szimulációk számára a biaxiális húzóvizsgálatokból származó adatsorra legkisebb négyzetek módszerével történő illesztéssel kaptuk.

$$T(\bar{I}_1, \bar{I}_2) = c_1(\bar{I}_1 - 3) + c_2(\bar{I}_2 - 3) + c_3(\bar{I}_1 - 3)^2 + c_4(\bar{I}_1 - 3)(\bar{I}_2 - 3) + c_5(\bar{I}_2 - 3)^2$$
⁽²⁾

A vér nem-newtoni, viszkózus folyadékként jellemezhető. Az áramlás időben és az érfalon belül pozíció szerint változó sebesség- és nyomásprofilokkal írható le.

2.2. Numerikus modellezés

A folyadék-szilárdtest-rendszerekben a két rész egymásra hatást gyakorol: az áramlás által a szilárdtestre kifejtett erőhatások megváltoztathatják a peremfeltételeket és alakváltozásokat okoznak, ami az áramlási tér megváltozását és ezáltal az áramlás paramétereinek megváltozását jelenti. Analitikus megoldások hiányában a parciális differenciálegyenletrendszerek numerikus megoldására van csak lehetőség.^{15,16} Többféle modellezési lehetőség van: legegyszerűbb esetben az áramlási tér változatlan (merev érfal), egyirányú kapcsolás esetén az egyik alrendszer szimulációjának eredményét a másikra teherként működtethetjük, kétirányú kapcsolás esetén a modell mindkettőnek a másikra gyakorolt hatását tartalmazza.¹⁵ Az áramlási feladat megoldása a véges térfogatok módszerével lehetséges a kontinuitási és a Navier-Stokes egyenletek alapján, a szilárdságtani feladat pedig végeselemes

modellezéssel. A munkánkhoz az ANSYS szoftvert használtuk.

Az első feladatban (50 mm hosszú, 4 mm belső átmérőjű, 0,6 mm falvastagságú) idealizált vastagfalú csövet definiáltunk az érfal modellezésére, amelynek méreteit az arteria carotis interna mérettartományának megfelelően vettünk fel szakirodalmi adatok alapján.4,17 A végeselem-modellben SHELL181 héjelemet használtunk, ami alkalmas nemlineáris számításokra. A vérnyomás és a sebesség időfüggéséből adódóan tranziens szilárdságtani vizsgálatot végeztünk. A cső két végén befogást alkalmaztunk peremfeltételként, ennek megfelelően a zavart zónát nem vettük figyelembe az eredmények értékelésénél. Az érfal sűrűségét 1102 kg/m³ értékre vettük fel. A lineárisan rugalmas anyagmodell esetén a rugalmassági modulus értéke a 250-1000 kPa tartományban volt, a Poisson tényezőt pedig 0,49 értékkel vettük fel (az összenyomhatatlanság biztosítására), a hiperelasztikus anyagmodell esetén pedig az ötparaméteres Mooney–Rivlin anyagmodellben az összenyomhatatlansági paramétert nulla értékre állítottuk. A mérési adatokra végrehajtott görbeillesztések alapján a (-2,43; 2,55; 3,5; -12,9; 13,1) [MPa] paramétereket alkalmaztuk. Az áramlásteret tetraéderelemekkel, illetve az inflációs rétegben ék

1. ábra. Az egyszerűsített geometria folyadéktartományának testhálója

alakú elemekkel hálóztuk. Az inflációs réteg alkalmazásának célja az áramlás sebességprofiljának, illetve a fali csúsztatófeszültségek és nyomásértékek pontos meghatározása volt (*1. ábra*). A méretekből és az érszakaszban jellemző véráramlási paraméterekből kiszámított Reynolds-szám (460) alapján az áramlást laminárisnak tekintettük. Mind a folyadék és szilárdtest tartományban hálófüggetlenségi vizsgálatok után 0,3 mm élhosszúságú hálót generáltunk.

Az áramlási tér falán csúszásmentes peremfeltétel lett beállítva. A bemeneti oldalon hely- és időfüggő nyomásprofilt írunk elő, amelynek időfüggését Scotti¹⁸ mérési eredményei alapján vettük fel, sugárirányú változását pedig a parabolikus sebességprofil használatával, a kimeneti oldalon nyomásprofilt alkalmaztunk hasonló elven¹⁸ (2. *ábra*). Kezdeti feltételként a nyomásprofil nulla időpillanatához tartozó nyomásértéket állítottuk be a folyadéktartományban.

Valós érszakasz szimulációja számára modellt készítettünk valós geometriai adatokkal, amelyeket röntgenangiográfia (RA) felvéte-

2. ábra. Bemeneti sebességprofil¹⁸ digitalizált alakja (*a*) és a kimeneti nyomásprofil¹⁸ digita-lizált alakja (*b*)

lekből szegmentálással nyertünk (*3. ábra*). A felvételek az interneten elérhető nyilvános anonimizált adatbázisokból származnak. A szegmentált geometriából felületi geometriát hoztunk létre. A valós érszakasz mindkét végén 20 mm hosszú csőszakasszal toldottuk meg, hogy a megfelelő áramláskép kialakulhasson a vizsgált tartományban, illetve hogy a peremfeltételek ne befolyásolják az eredményeket (*4. ábra*).

3. Eredmények

A Az idealizált geometriájú csőszakaszon szimulációkat végeztünk merev fal feltételezésével, egyirányú kapcsolással az áramlás és az érfal között, illetve kétirányú kapcsolással lineárisan rugalmas anyaggal (E=250 kPa, ν =0,49) a különböző kapcsolási eljárások összehasonlításának céljából. A szimulációkban azonos terhek és geometria szerepelt, az élhosszak 0,3 mm, az időlépés 0,01 s volt, időlépésenként 20 iterációval, a kimeneti nyomás 50 Hgmm volt. A folyadéktartomány

4. ábra. Valós érszakaszgeometria meghoszszabbításokkal

3. ábra. Röntgenangiográfia-felvétel szegmentálása

Biomechanica Hungarica 2023;16(1):17-24

mezőváltozóira és folytonosságára megadott reziduumok 10⁻⁴ mérettartományúak. A három különböző kapcsolású szimuláció eredményeinek összehasonlítása az 1. táblázatban látható. Megállapítható, hogy az egyes szimulációk között 2-3%-os eltérés van. Mivel ezen a szabályos idealizált geometrián várható volt, hogy az áramlási és szilárdsági jellemzők a hossz mentén egyenletes (a végszakaszokat kivéve), illetve hengerszimmetrikus eloszlást mutatnak szélsőséges ingadozások nélkül, a két alrendszer közötti kapcsolás jellegétől csak kis mértékben függnek az eredmények. A tisztán áramlástani szimulációban alakváltozások értelemszerűen nincsenek, de a gyűrűirányú feszültségekre becslés adható kazánképlettel. Az érték jól közelíti (3% hibával) a kapcsolt szimuláció von Mises-feszültségeit.

6. ábra. Hiperelasztikus anyagú valós geometriájú modell mechanikai feszültségei

1.	táblázat.	Tisztán	áramlástani,	valamint a	iz egy-	és kétir	rányban	kapcsolt	szimulá	ciók
e	redménye	inek öss	szehasonlítás	sa			-	-		

Paraméter	Áramlástani szimuláció	Egyirányban kapcsolt	Kétirányban kapcsolt					
Maximális sebességérték [cm/s]	41,176	40,728	40,568					
Maximális nyomásérték [Pa]	6656	6656	6657					
Maximális fali csúsztatófeszültség-érték [Pa]	2847	2809	2860					
Maximális elmozdulás [mm]	-	0,15517	0,16603					
von-Mises feszültség maximuma [MPa]	0,022187*	0,022949	0,022869					
* közelítő gyűrűirányú feszültség								

5. ábra. Hiperelasztikus anyagú valós geometriájú modell alakváltozásai

A szegmentálással létrehozott valós geometrián kétirányú kapcsolt szimulációt végeztünk hiperelasztikus anyagmodellel a szakirodalmi nyomás- és sebességadatokkal (-12,15; 12,75; 17,50; 64,50; 65,5) [MPa] paraméterekkel. A modell alakváltozásait az 5. *ábra*, a mechanikai feszültségeit a 6. *ábra* mutatja. Az alakváltozások követik a feszültségek változását.

4. Megbeszélés

Ebben a tanulmány az arteria carotis interna mérettartományába eső érszakaszok nemlineáris anyagparaméterekkel jellemzett falának időfüggő terhelésekre adott mechanikai válaszát határoztuk meg tisztán áramlástani, és egy- ill. kétirányú kapcsolt szimulációval. Az idealizált geometrián végrehajtott szimulációk végrehajtása igazolta a modellépítés megfelelőségét és az eredmények összhasonlítása validálta az alkalmazott eljárást. Ennek ismeretében adatbázisból származó valós érszakasz röntgenangiográfia-felvételeinek digitális feldolgozásával készített modellen is bemutattuk a szimulációt hiperelasztikus anyagmodell alkalmazásával, amelyhez mért adatokra történő görbeillesztéssel nyertük az anyagi paramétereket. A modell a jövőben továbbfejleszthető pl. a környező szövetek ágyazásának figyelembevételével.

A szerzők részvétele: T.B.K.: kézirat megírása, témavezetői feladatokat ellátása, M.H.: numerikus szimulációk elvégzése, L.I.É.: témavezetői feladatokat ellátása

Támogatás: A bemutatott kutatás a BME-EGA-02 számú projekt részeként a Kulturális és Innovációs Minisztérium Nemzeti Kutatási Fejlesztési és Innovációs Alapból nyújtott támogatással, a TKP2021 pályázati program finanszírozásában valósult meg.

Összeférhetetlenség: Nincs.

IRODALOM

- Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity and the Physical Science of Solids. 2000;61:1-48. DOI
- Ohira T, Shahar E, Iso H, et al. Carotid artery wall thickness and risk of stroke subtypes, the atherosclerosis risk in communities study. Stroke. 2011;42:397-403. DOI
- Eigenbrodt ML, Sukhija R, Rose KM, et al. Common carotid artery wall thickness and external diameter as predictors of prevalent and incident cardiac events in a large population study. Cardiovascular Ultrasound. 2007;5:11. DOI
- Krejza J, Arkuszewski M, Kasner SE, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke. 2006;37:1103-5. DOI

- Earl E, Mohammadi H. Biomechanics of human blood. In: Mohammadi H, editor. Biomechanics. IntechOpen, 2019. DOI
- Bárdossy G, Halász G. Modeling blood flow in the arterial system. Periodica Polytechnica Mechanical Engineering. 2011;55(1):49-55. DOI
- Csippa B, Závodszky G, Paál G, Szikora I. A new hypothesis on the role of vessel topology in cerebral aneurysm initiation. Computers in Biology and Medicine. 2018;103:244-51. DOI
- Berg P, Voβ S, Saalfeld S, et al. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I, Segmentation. Cardiovascular Engineering and Technology. 2018;9:565-81. DOI
- Tarnoki AD, Tarnoki DL, Stazi MA, et al. Twins lead to the prevention of atherosclerosis: preliminary findings of international twin study 2009. Journal for Vascular Ultrasound. 2011;35(2):61–71. DOI

- Tóth BK, Bojtár I. Mechanical behaviour of healthy and damaged human arteries and validation of parameters derived from experiments. Biomech Hung. 2013;6(1):157-63.
- Bazilevs Y, Calo VM, Zhang Y, Hughes TJR. Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Computational Mechanics. 2006;38:310–22. DOI
- Ming-Chen H, Kamensky D, Bazilevs Y, Sacks MS, Hughes, TJR. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Computational Mechanics. 2014;54:1055-71. DOI
- Tezduyar TE, Sathe S, Schwaab M, Conklin BS. Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. International Journal for Numerical Methods in Fluids. 2008;57:601–29. DOI
- 14. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE. Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes. Computer Methods in Applied

Mechanics and Engineering. 2009;198(45-46):3613-21. *DOI*

- Ahamed M, Atique S, Munshi AK, Koiranen T. A concise description of one way and two way coupling methods for fluid-structure interaction problems. American Journal of Engineering Research (AJER). 2017;6(3):86-9.
- Hou G, Wang J, Layton A. Numerical methods for fluid-structure interaction – A review. Cambridge University Press, 2015. DOI
- 17. Savić ŽN, Soldatović II, Brajović MD, Pavlović AM, Mladenović DR, Škodrić-Trifunovi VD. Comparison between; carotid artery wall thickness measured by multidetector row computed tomography angiography and intimae-media thickness measured by sonography. The Scientific World Journal. 2011;11:981856. DOI
- Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid– structure interaction. Computer Methods in Biomechanics and Biomedical Engineering. 2008;11(3):301-322. DOI