3D nyomtatási anyagok mechanikai tulajdonságainak meghatározása különböző nyomtatási irányokban

Parragh Márk¹, Manó Sándor²

¹ Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék

² Debreceni Egyetem, Általános Orvostudományi Kar, Ortopédiai Tanszék

mark.parragh@hotmail.com

DOI: 10.17489/2018/1/01

Absztrakt

Az additív gyártástechnológiák térhódításának és gyors ütemű fejlődésének köszönhetően már számos területen gyártanak műszaki céllal készült alkatrészeket additív eljárásokkal. Ezen modellek esetében létfontosságú, hogy a velük szemben támasztott elvárásoknak (méretpontosság, mechanikai szilárdság, stb.) megfeleljenek. Az ezt segítő végeselemes szimulációk kellően pontos futtatása viszont csak az alapanyagok tulajdonságainak, viselkedésének ismeretében lehetséges.

Az additív gyártástechnológiák jellegéből fakadóan (rétegről rétegre történő építkezés) sejthető, hogy ilyen modellek esetén nem alkalmazható izotróp modell, vagyis a modellek irányfüggő tulajdonságokkal rendelkeznek. Jelen célja annak vizsgálata, hogy a rétegződési irány milyen hatással van Polyjet eljárással létrehozott próbatestek húzási-, nyomási-, és hajlítási tulajdonságaira, illetve keménységére. Ennek érdekében húzó-, nyomó-, és hajlítóvizsgálatok, valamint keménységmérések elvégzésével vizsgáltuk az additív technológiával készült modellek mechanikai tulajdonságait. A kapott eredmények összevetésre kerültek a kapcsolódó irodalmakkal, valamint a gyártó cég katalógusadataival is. Összességében elmondható, hogy az additív technológiákkal készült modellek szerkezete nem izotróp, és ez a mechanikai tulajdonságokat is befolyásolja.

Kulcsszavak: 3D nyomtatás, additív gyártástechnológiák, nyomtatási orientáció, mechanikai tulajdonságok

The mechanical properties of 3D printing materials in different printing orientations

Abstract

Due to the expansion and rapid development of additive manufacturing technologies, technical parts are manufactured in many areas by additive processes. For these models it is vital to meet the required expectations (dimensional accuracy, mechanical strength, etc.). Although it is only possible to run the finite-element simulations that are sufficiently precise in the knowledge of the properties and behavior of the materials.

Due to the nature of additive manufacturing technologies (layer-to-layer construction) it is conceivable that such models do not have an isotropic model, ie models have directional properties. This research investigates how the stratification direction affects the tensile, compressive, and flexural properties and hardness of the specimens created by the Polyjet method. For this purpose, the mechanical properties of the specimens were tested by performing tensile, compressive and flexural tests as well as hardness measurements. The results obtained were compared with related literature as well as the catalog information of the manufacturer. Overall, the structure of additive technologies is not isotropic, and it also affects the mechanical properties.

Keywords: 3D printing, additive manufacturing, printing orientation, mechanical properties

Bevezetés

Napjainkban a konvencionális, szubtraktív elven működő gyártási eljárásokat egyre több területen váltják fel az additív gyártástechnológiák. Az additív gyártástechnológiák fő előnyei a hagyományos technológiákkal szemben, hogy tetszőleges geometriai komplexitású modell gyártható, kevesebb hulladék keletkezik, szerszámozás nem szükséges, de az ipari alkalmazás elengedhetetlen feltétele a nyomtatók és nyomtatási alapanyagok megfizethetősége, és a gyártási folyamat paramétereinek optimalizálása is.

Az additív gyártástechnológiák alkalmazása ma már nem csupán prototípuskészítési célt szolgál, a gyártott modellnek nem csupán bizonyos jellemzők tekintetében kell megegyeznie a gyártani kívánt termékkel. Az additív gyártástechnológiák számos alkalmazási területén (repülő-és űripar, autóipar, fogászat, orvosi alkalmazások) elengedhetetlen termék megfelelő méretpontosságának, anyagi-, és mechanikai jellemzőinek biztosítása.

Az additív gyártástechnológiák egy előzetesen megalkotott digitális modell alapján, egymásra épülő anyagrétegekből hozzák létre a tömör alkatrészt, ami ezáltal eltérő szerkezettel rendelkezik, mint a szubtraktív technológiával, tömbi formából gyártott alkatrész. Emiatt a hagyományos gyártási eljárások esetén használt lineáris izotróp anyagmodell nem alkalmazható. Jelen kutatás célja a Polyjet additív technológiával létrehozott elemek mechanikai tulajdonságainak (húzó-, nyomó-, és hajlítószilárdság, Shore keménység) vizsgálata a modell gyártása során alkalmazott nyomtatási orientáció függvényében.

Az additív technológiákkal készített műszaki alkatrészek mechanikai tulajdonságainak pontos ismerete elengedhetetlen a megfelelő pontosságú végeselemes szimulációk elvégzéséhez, így a rétegződési irány mechanikai tulajdonságokra való hatásának ismerete alapvető fontosságú. A nyomtatási alapanyagok gyártói által rendelkezésre bocsátott katalógusokban az alapanyagok bizonyos mechanikai tulajdonságainak értékei intervallumos formában megtalálhatók. A témához kapcsolódó magyar és idegen nyelvű irodalmak feltárása lehetőséget biztosított az általunk kapott és az irodalomban található eredmények összehasonlítására. A kutatás során 10 nyomtatási alapanyagból 3 különböző nyomtatási orientációval készült modelleket vizsgáltunk húzó-, nyomó-, és hajlítóvizsgálatokkal, valamint keménységméréssel.

Irodalomkutatás eredménye

Számos idegen, de igen kevés magyar nyelvű forrás foglalkozik a rétegződési irány mechanikai tulajdonságokra való hatásával, az alábbiakban a legrelevánsabb publikációk eredményeit foglaljuk össze.

Dongbum és munkatársainak kutatása¹ a rétegződési irány és a húzási tulajdonságok közti kapcsolatot elemezte három különböző eljárással (PolyJet, FDM és SLA), az *1. ábrán* látható négy különböző orientációban nyomtatott próbatesteken végzett ASTM D638 szabványnak megfelelő húzóvizsgálatokkal, amelynek eredményei az *1. táblázat*ban láthatók.

1. ábra. Az alkalmazott nyomtatási orientációk¹

AM technológia	Nyomtatási irány	Húzási rugalmassági modulus [MPa]	Húzószilárdság [MPa]	Szakadási nyúlás [%]
	ху-х	2122,6	31,3	3,1
FDM	XZ-X	2209,7	33,9	3,3
	XZ-Z	1193,9	10,5	1,4
ABSplus TM	XZ-XZ	1784,9	18,6	2,4
	Katalógusadat	2200,0	33,0	6,0
	ху-х	2431,3	64,6	14,0
PolyJet	XZ-X	2665,3	68,2	12,1
FullCure835	XZ-Z	1433,9	13,6	0,9
	XZ-XZ	1434,3	29,4	3,4
	Katalógusadat	2450,0	58,5	14,0
	ху-х	2221,5	45,3	5,2
SLA	XZ-X	2210,9	48,8	5,6
VisiJet SL	XZ-Z	2225,8	49,6	5,7
	XZ-XZ	2214,8	46,7	5,6
	Katalógusadat	2560,0	52,0	6,0

1. táblázat. A mérések eredményei¹

Vega és munkatársai² 3DP nyomtatási eljárással, különböző nyomtatási orientációval előállított polimer próbatesteket húzóvizsgálatokkal, hárompontos hajlítóvizsgálatokkal és

2. ábra. A különböző nyomtatási orientációk:
 a) Arrestor; b) Divider; c) Transverse²

ütővizsgálatokkal vizsgáltak. A vizsgált nyomtatási orientációk a 2. *ábrán*, míg az eredmények a 3. *ábrán* láthatók.

Barclift és Williams³ azt vizsgálta, hogy a nyomtatófej mozgása és a test hossztengelyének viszonya, a test nyomtatótálcára merőleges mérete, valamint a nyomtatott próbatestek közti, nyomtatás közbeni távolság (*4. ábra*) hogyan befolyásolja a Polyjet technológiával gyártott próbatestek húzási tulajdonságait. A húzóvizsgálatok az ASTM D638 szabványnak megfelelően történtek, a vizsgálatok eredményei az *5. ábrán* láthatók.

A: Arrestor, D: Divider, T: Transverse

A magyar nyelvű kutatások közül a témával kapcsolatban Ficzere és Borbás munkásságát érdemes kiemelni, akik számos közös publikációjukban kielemezték a rétegződési irány me-

4. ábra. A vizsgálati paraméterek³

chanikai tulajdonságokra gyakorolt hatását.⁴⁻¹⁰ A *2. táblázat*ban jelen kutatásban is vizsgált orientációjú (*5. ábra*) próbatestek húzási jellemzői kerültek összefoglalásra.

Anyag és módszer A vizsgált nyomtatási orientációk

A kutatás során 10 különböző (8 merev és 2 rugalmasnak tekinthető) anyagból Polyjet technológiával készült próbatestek mechanikai tulajdonságait vizsgáltuk. A próbatesteket a

Orientáció	Húzási rugal- massági modulus [MPa]	Húzó- szilárdság [MPa]	Szakadási nyúlás [%]
álló 16μm	2302 ± 32	57±0,3	8,4±0,7
álló 30 μm	2376±41	60±0,6	5,8±0,3
fekvő 16 µm	2095±74	49±2,5	11,1±4,5
fekvő 30 µm	2068±19	48±0,8	12,6±4,5
állított 30 μ m	1980±39	$28,15\pm0,79$	$1,6\pm 0,009$

2. táblázat. A szakítóvizsgálatok eredményei⁴

ábra. A húzóvizsgálat eredményei: *a*) Húzószilárdság átlaga és szórása;
 b) Húzási rugalmassági modulus átlaga és szórása³

6. ábra. A vizsgált nyomtatási orientációk:
a) Fektetett próbatestek;

b) Állított próbatest⁴

Debreceni Egyetem ÁOK Ortopédia Tanszék Biomechanikai Laboratóriumában található Connex Objet260 (Stratasys) típusú nyomtatóval állítottuk elő (7. *ábra*), amelyekben a rétegződési irányok egymásra merőlegesek. A továbbiakban a nyomtatási orientációkra való hivatkozás a 7. *ábrá*nak megfelelően, X, Y és Z irányként történik.

A vizsgált anyagok és a gyártó által megadott adatok

Az általunk vizsgált tíz anyag gyártója és forgalmazója a Stratasys cég, az anyagokat kife-

7. *ábra*. A vizsgált próbatestek nyomtatási orientációi

jezetten a PolyJet nyomtatási technológiához gyártják. Az általunk vizsgált anyagok a cég honlapján megtalálható adatlapokból származó és a vizsgálatok szempontjából releváns mechanikai tulajdonságait a 3. táblázat tartalmazza.^{11,12} A táblázat világosabb sorai a rideg anyagokat, a sötétebb sorok a rugalmas anyagokat jelölik. Az általunk vizsgált 10 anyagból 8 VeroWhitePlus-RGD835 (a továbbiakban VeroWhite, merev alapanyag) és TangoBlackPlus FLX980 (rugalmas alapanyag) alapanyagok különböző arányú keverésének eredménye. A másik két vizsgált anyag a VeroWhitePlus-RGD835 és egy másik merev alapanyag, VeroClear-RGD810 (a továbbiakban VeroClear).

A vizsgált mechanikai tulajdonságok meghatározása

A 3D nyomtatási alapanyagokkal kapcsolatos, akár gyártó által kibocsátott, akár egyéb forrásból származó dokumentumokban megtalálható mechanikai jellemzőket általában American Society for Testing and Materials (ASTM) szabványok szerinti vizsgálatokkal határozzák meg. Emiatt a mechanikai vizsgálatok a vonatkozó ASTM szabványoknak megfelelően

Anyag	Húzó- szilárdság [MPa]	Húzó rugalmassági modolus [MPa]	Hajlító- szilárdság [MPa]	Hajlító rugalmassági modulus [MPa]	Shore A keménység [-]	Shore D keménység [-]
VeroClear- RGD810	50-65	2000-3000	75-110	2200-3200	-	83-86
VeroWhitePlus- RGD835	50-65	2000-3000	75-110	2200-3200	-	83-86
RGD8505-DM	40-60	1700-2300	55-75	1500-2500	-	81,1-85,5
RGD8510-DM	40-60	1700-2300	55-75	1500-2500	-	81,1-85,5
RGD8515-DM	40-60	1700-2300	55-75	1500-2500	-	81,1-85,5
RGD8520-DM	40-60	1700-2300	55-75	1500-2500	-	81,1-85,5
RGD8525-DM	35-45	1400-2000	45-60	1400-1800	-	79,5-83,5
RGD8530-DM	29-38	1100-1700	35-45	1200-1500	-	76,1-81,7
FLX9885-DM	5-7	-	-	-	80-85	-
FLX9895-DM	8,5-10	-	-	-	92-95	-

3. táblázat. A vizsgált anyagok gyártó által megadott adatai^{11,12}

végeztük. Ha volt rá lehetőség (a vonatkozó ASTM szabvány keretei megengedték), akkor az egyes vizsgálatok paramétereit úgy választottuk meg, hogy az International Organization for Standardization (ISO) szabványoknak is megfeleljenek. Az elvégzett vizsgálatokat, a vonatkozó szabványokat, valamint a próbatestek számát és nyomtatási orientációit a *4. táblázat* foglalja össze. A nyomtató próbatestek négyzet alapú hasábok, ezért az X és az Y nyomtatási irány megegyezik, a keménységmérésnél az X irányú próbatestek mindkét lapjának keménységét lemértük, a próbatest nyomtatás közben nyomtatólappal érintkező oldalának jelölése XS-el történt.

A húzó-, nyomó-, és hajlítóvizsgálatok a Debreceni Egyetem ÁOK Ortopédia Tanszék Biomechanikai Laboratóriumában található Instron 8874 szakítógépen történtek. A lágyabb (rugalmas) anyagok vizsgálatára szolgáló Shore A keménységmérés Instron S1, a keményebb (merev) anyagok Shore D vizsgálata Bareiss HP típusú berendezésekkel történt.

A vizsgálatok elvégzése után próbatestek húzási (húzószilárdság, Young-modulus, húzószilárdságnál fellépő megnyúlás), nyomási (nyomószilárdság, nyomó rugalmassági modulus, nyomószilárdságnál fellépő összenyomódás) és hajlítási jellemzői (hajlítószilárdság, hajlító rugalmassági modulus), valamint a Shorekeménységmérések eredményeit értékeltük ki átlag- és szórásszámítás segítségével.

Eredmények A húzóvizsgálatok eredményei

A húzóvizsgálatok során az X és Y irányú próbatestek a Z irányú próbatestektől eltérően viselkedtek (8. ábra). Az általunk végzett húzóvizsgálatok eredményei (5. táblázat) alapján megállapítható, hogy minden vizsgált anyag esetén az Y irányú próbatestek húzószilárdsága a legnagyobb, és a Z irányú próbatestek húzószilárdsága a legkisebb. A húzószilárdságok közti eltérés a keverékanyagok esetén annál nagyobb, minél nagyobb a próbatest alapanyagának VeroWhite tartalma. A húzási rugalmassági modulus értékek konzekvensen a Z irányú próbatestek esetén a legnagyobbak. Ezen felül megállapítható, hogy az Y irányú próbatestek az X irányú próbatesteknél nagyobb húzó rugalmassági modulussal rendelkeznek. A mért értékek alapján (8. ábra) látható, hogy a húzó próbatestek anyagai a húzási tulajdonságok szempontjából nem tekinthetők izotrópnak.

A saját mérési eredményeinket a katalógusadatokkal (*3. táblázat*) összevetve megállapítható, hogy a Z irányú próbatestek húzószilárdságai az összes anyag esetén kisebbek a gyártó cég által megadott intervallum alsó határánál. A húzó rugalmassági modulus értékek meg-

Vizsgálat típusa	Húzóvizsgálat	Nyomóvizsgálat	Hajlítóvizsgálat	Keménységmérés
Szabványok	ASTM D638 EN ISO 527	ASTM D695 EN ISO 604	ASTM D790 EN ISO 178	ASTM D2240 ISO 868
Szükséges próbates- tek száma	5	5	5	1
Vizsgált nyomtatási orientációk	X, Y, Z	XY, Z	X, Y, Z	X, XS, Y, Z

4. táblázat. Az általunk végzett vizsgálatok

felelnek a katalógusadatoknak. A rugalmas anyagokból (DM9885, DM9895) készült húzó próbatestek húzóvizsgálatára idő hiányában egyelőre nem került sor.

8. ábra. a) DM8505-X irányú próbatestek szakítógörbéi; b) DM8505-Z irányú próbatestek szakítógörbéi

Anyag-orientáció	Húzó- szilárdság [MPa]	Húzó- szilárdság szórás [MPa]	Húzó rugalmassági modulus [MPa]	Húzó rugalmassági modulus szórás [MPa]	Nyúlás a húzó- szilárdságnál [%]	Nyúlás szórás [%]
VeroClear-X	58,88	1,384	2679,86	51,900	3,98	0,190
VeroClear-Y	63,07	0,231	2512,13	39,662	3,98	0,099
VeroClear-Z	34,04	1,127	2896,81	104,041	1,35	0,064
VeroWhite-X	40,04	0,953	2075,46	45,845	3,96	0,038
VeroWhite-Y	46,59	0,372	2358,60	38,251	4,10	0,513
VeroWhite-Z	39,91	3,746	2601,04	78,198	1,85	0,233
DM8505-X	40,05	0,299	2077,79	16,497	3,97	0,116
DM8505-Y	45,08	0,335	2292,69	29,202	3,85	0,058
DM8505-Z	39,15	1,760	2685,96	68,947	1,79	0,107
DM8510-X	38,52	1,510	2022,05	67,166	3,85	0,092
DM8510-Y	45,21	0,865	2320,17	39,322	3,89	0,093
DM8510-Z	37,51	2,217	2709,28	33,834	1,68	0,137
DM8515-X	40,74	1,164	2123,76	38,095	3,87	0,160
DM8515-Y	44,30	0,536	2264,80	21,998	3,91	0,098
DM8515-Z	36,47	0,974	2604,76	26,902	1,70	0,081
DM8520-X	37,50	0,101	2006,40	27,945	3,96	0,082
DM8520-Y	41,61	0,401	2159,25	28,939	3,84	0,045
DM8520-Z	34,46	2,154	2445,88	27,876	1,80	0,188
DM8525-X	32,44	1,263	1768,37	69,576	3,90	0,053
DM8525-Y	35,43	0,493	1898,60	33,718	3,88	0,075
DM8525-Z	31,07	1,182	2153,28	51,065	2,19	0,187
DM8530-X	24,00	0,655	1356,46	46,645	4,67	0,312
DM8530-Y	27,26	0,738	1548,91	30,144	3,84	0,137
DM8530-Z	23,85	0,649	1824,76	74,301	2,18	0,042

5. táblázat. A rideg anyagok vizsgált húzási tulajdonságai és azok szórásai

A nyomóvizsgálatok eredményei

A vizsgált rideg anyagok esetében elmondható, hogy a felvett görbék alakja XY és Z nyomtatási orientációk esetében hasonló, eltérés csupán a nyomószilárdság értékében van (*9. ábra*). Az általunk végzett nyomóvizsgálatok eredményei (6. *táblázat*) alapján megállapítható, hogy a keverékanyagok esetén az XY irányú próbatestek nagyobb nyomószilárdsággal és nyomó rugalmassági modulussal rendelkeznek, mint a Z irányúak, és minél kevésbé merev az anyag,

9. ábra. Nyomófeszültség-fajlagos összenyomódás görbék: a) DM8505-X próbatestek; b) DM8505-Z próbatestek

Anyag-orientáció	Nyomó- szilárdság [MPa]	Nyomó- szilárdság szórás [MPa]	Nyomó rugalmassági modulus [MPa]	Nyomó rugalmassági modulus szórás [MPa]	Összenyomó- dás a nyomó- szilárdságnál [%]	Összenyomó- dás szórás [%]
VeroClear-XY	94,71	0,803	2317,28	33,470	5,84	0,044
VeroClear-Z	95,30	0,887	2324,27	24,113	5,70	0,205
VeroWhite-XY	80,97	1,041	2040,74	27,316	5,64	0,236
VeroWhite-Z	80,36	3,219	2022,83	77,319	5,51	0,155
DM8505-XY	83,07	0,373	2099,56	10,028	5,45	0,021
DM8505-Z	81,56	3,137	2061,08	64,032	5,51	0,228
DM8510-XY	78,97	0,773	2005,41	13,261	5,34	0,171
DM8510-Z	77,83	2,995	1982,91	64,087	5,58	0,131
DM8515-XY	78,20	0,781	1994,68	25,060	5,42	0,058
DM8515-Z	76,72	3,252	1947,35	66,297	5,53	0,170
DM8520-XY	72,12	1,178	1859,68	24,347	5,37	0,063
DM8520-Z	68,50	2,506	1766,4	55,085	5,36	0,055
DM8525-XY	62,51	0,938	1657,66	23,640	5,30	0,136
DM8525-Z	54,11	1,195	1437,29	29,952	5,33	0,055
DM8530-XY	44,36	0,743	1254,12	21,983	5,23	0,071
DM8530-Z	36,42	1,226	1030,08	27,222	5,68	0,081
DM9885-XY	-	-	15,36	0,933	-	-
DM9885-Z	-	-	7,27	0,360	-	-
DM9895-XY	1,50	0,279	86,23	21,091	4,63	0,571
DM9895-Z	-	-	21,58	1,186	-	-

6. táblázat. A vizsgált anyagok vizsgált nyomási tulajdonságai és azok szórásai

annál nagyobb mértékű az eltérés. Ennek megfelelően a nyomtatott próbatestek anyagai a nyomási tulajdonságok szempontjából sem tekinthetők izotrópnak.

Az anyagokat gyártó cég katalógusaiban az anyagok nyomószilárdságát és a nyomószilárdságnál felvett alakváltozás értékét nem adta meg, ezért a mért eredmények katalógusadatokkal való összevetésére a nyomóvizsgálatok esetében nincs módunk.

A rugalmas anyagokból (DM9885, DM9895) készült nyomó próbatestek közül csak egy irány (DM9895-XY) esetén voltak értelmezhetők az általunk vizsgált mechanikai tulajdonságok.

A hajlítóvizsgálatok eredményei

A húzási jellemzők vizsgálatához hasonlóan a hajlítóvizsgálatok során felvett görbék alakja X és Y nyomtatási orientációk esetében hasonlóan, a Z irányú próbatestek ettől eltérően viselkednek (*10. ábra*). Az általunk végzett hajlítóvizsgálatok eredményei (*7. táblázat*) alapján megállapítható, hogy az Y irányú próbatestek rendelkeznek a legnagyobb hajlítószilárdsággal, a merevebb anyagok esetében a Z irányú, rugalmasabb anyagoknál pedig az X irányú hajlítószilárdság a legkisebb. A hajlító rugalmassági modulus kapcsán az figyelhető meg, hogy az Y irányú próbatestek hajlító rugalmassági modulusa lényegesen nagyobb az X irányú próbatestekénél, valamint, hogy a Z irányú próbatestek hajlító rugalmassági modulusa a többi irányéhoz képest folyamatosan csökken az anyag rugalmasságának növekedésével. Elmondható, hogy a nyomtatott próbatestek anyagai a hajlítási tulajdonságok szempontjából sem tekinthetők izotrópnak.

A saját mérési eredményeinket a katalógusadatokkal (*3. táblázat*) összevetve megállapítható, hogy bizonyos esetekben a próbatestek hajlítószilárdsága magasabb, bizonyos próbatestek hajlító rugalmassági modulusa pedig alacsonyabb volt, mint a katalógusban megadott értékek. A rugalmas anyagokból (DM9885, DM9895) készült hajlító próbatestek mechanikai tulajdonságai a kapott görbék alapján nem voltak meghatározhatók. A *11. ábrán* a merevebb, DM9885 jelzésű anyag X irányú próbatestjeinek hajlítófeszültség-lehajlás görbéit látható.

A Shore-keménységmérések eredményei

Az általunk végzett keménységmérések eredményei a *8. táblázat*ban láthatók. Megállapítható, hogy az XS irányú keménységek nagyobbak, mint az X irányúak, ez azzal ma-

10. ábra. Hajlítófeszültség-lehajlás görbék: a) DM8510-X próbatestek; b) DM8510-Z próbatestek

11. ábra. DM9885-X hajlító próbatestek lehajláshajlítófeszültség görbéi

Anyag-orientáció	Hajlítószilárdság [MPa]	Hajlítószilárdság szórás [MPa]	Hajlító rugalmassági modulus [MPa]	Hajlító rugalmassági modulus szórás [MPa]
VeroClear-X	93,05	0,904	2458,89	6,852
VeroClear-Y	95,91	0,516	2473,34	20,060
VeroClear-Z	94,12	0,500	2476,26	20,177
VeroWhite-X	75,04	2,768	2019,52	48,188
VeroWhite-Y	92,20	0,680	2425,82	24,472
VeroWhite-Z	93,84	3,013	2505,60	48,313
DM8505-X	76,19	2,393	1992,86	73,934
DM8505-Y	90,56	0,526	2342,55	11,339
DM8505-Z	86,01	3,140	2374,25	43,033
DM8510-X	73,41	2,285	1882,13	55,147
DM8510-Y	87,40	1,208	2281,41	44,628
DM8510-Z	77,24	2,596	2280,12	41,297
DM8515-X	70,44	1,553	1836,32	29,513
DM8515-Y	85,23	1,140	2220,52	40,400
DM8515-Z	72,52	0,799	2180,62	59,219
DM8520-X	65,42	1,450	1670,49	82,028
DM8520-Y	80,10	1,560	2090,78	66,280
DM8520-Z	60,91	0,970	1820,08	24,813
DM8525-X	52,99	1,030	1327,26	68,288
DM8525-Y	67,82	1,891	1760,13	47,181
DM8525-Z	45,23	2,790	1350,99	32,835
DM8530-X	36,61	2,130	902,94	85,935
DM8530-Y	46,15	2,129	1185,54	65,165
DM8530-Z	34,19	2,124	862,00	47,617

Anyag orien- táció	Shore D keménység	Shore D szórás	Shore A keménység	Shore A szórás
VeroClear-X	82,8	0,632	-	-
VeroClear-XS	83,2	0,823	-	-
VeroClear-Y	82,2	0,632	-	-
VeroClear-Z	82,6	0,516	-	-
VeroWhite-X	80,7	0,823	-	-
VeroWhite-XS	81,9	0,738	-	-
VeroWhite-Y	81	0,667	-	-
VeroWhite-Z	82,1	0,738	-	-
DM8505-X	80,4	0,516	-	-
DM8505-XS	81,6	0,516	-	-
DM8505-Y	78,7	1,059	-	-
DM8505-Z	82,1	0,738	-	-
DM8510-X	80,8	0,422	-	-
DM8510-XS	82	0,471	-	-
DM8510-Y	79,6	0,516	-	-
DM8510-Z	82	0,816	-	-
DM8515-X	79,9	0,738	-	-
DM8515-XS	80,8	0,422	-	-
DM8515-Y	80,9	0,568	-	-
DM8515-Z	81,9	0,568	-	-
DM8520-X	79,3	0,675	-	-
DM8520-XS	80,5	0,422	-	-
DM8520-Y	80,3	0,675	-	-
DM8520-Z	81,2	0,422	-	-
DM8525-X	78,3	0,675	-	-
DM8525-XS	79,3	0,483	-	-
DM8525-Y	75,8	1,229	-	-
DM8525-Z	79,8	0,422	-	-
DM8530-X	75,8	0,919	-	-
DM8530-XS	76,4	0,699	-	-
DM8530-Y	74,2	1,033	-	-
DM8530-Z	76,7	0,823	-	-
DM9885-X	-	-	71,22	1,683
DM9885-XS	-	-	72,11	1,69
DM9885-Y	-	-	70,99	0,812
DM9885-Z	-	-	72,61	0,645
DM9895-X	-	-	82,06	1,09
DM9895-XS	-	-	83,38	2,042
DM9895-Y	-	-	85,9	0,872
DM9895-Z	-	-	86,54	0,74

7. *táblázat*. A rideg anyagok vizsgált hajlítási tulajdonságai és azok szórásai

8. *táblázat.* A Shore-keménységmérések eredményei

gyarázható, hogy a nyomtatás közben támaszanyaggal fedett, emiatt nagyobb felületi érdességgel rendelkező lapon a vizsgálóberendezés benyomófeje mélyebbre tud hatolni. Ezen kívül elmondható, hogy a Z irányú próbatestek a legkeményebbek, az Y irányúak pedig a legkevésbé kemények. Ezzel együtt megállapítható, hogy a próbatestek keménysége csak csekély mértékben függ a nyomtatási orientációtól.

A mérési eredményeinket a katalógusadatokkal (*3. táblázat*) összevetve megállapítható, hogy számos esetben a próbatestek keménysége kisebb, mint a katalógusban megadott intervallum alsó határa. A rugalmas anyagok esetében (DM9885, DM9895) az általunk mért értékek közül egy sem esett bele a gyártó által megadott intervallumba.

Konklúzió

Összefoglalóan megállapítható, hogy a Z irányú nyomtatással készült próbatestek merevebb viselkedést tanúsítottak az X és Y irányú nyomtatással készült próbatesteknél, ami a vizsgálatok irányára merőleges rétegződési iránnyal magyarázható. Az általunk mért értékek azt mutatják, hogy a gyártó cégnek a katalógusadatok megadása során mindenképpen érdemes lenne legalább két esetet, a vizsgálat irányával párhuzamos rétegződést és a vizsgálat irányára merőleges rétegződést megkülönböztetni. Az általunk mért értékek egyező tendenciákat mutattak a kapcsolódó irodalmakkal, ez eddigi irodalmakhoz képest újdonság, hogy mi a nyomtatási irány mechanikai tulajdonságokra való hatásának vizsgálatára egy kutatáson belül többféle vizsgálati módszert is alkalmaztunk. A mérések egyértelműen megmutatták, hogy a 3D nyomtatási eljárásokkal előállított modellek végeselemes szimulációjának esetén nem használható izotróp anyagmodell, a megfelelő pontosságú végeselemes szimulációk elvégzéséhez elengedhetetlen a rétegződési irány hatását is figyelembe vevő ortotróp anyagmodelleket (ez az anizotópia egy speciális fajtája, ahol az anyagjellemzők két vagy három egyértelműen meghatározható kitüntetett iránnyal jellemezhetők) tartalmazó adatbázis mérések segítségével való megalkotása.

A próbatestek mért értékei számos esetben nem egyeztek a katalógusban megadott értékekkel. A vizsgálatok eredményei és a katalógusadatok közti eltérések valószínű oka, hogy a gyártó cég által megadott adatok az alapanyagra vonatkoztak, míg mi a vizsgálat során a 3D nyomtatóval gyártott test, mint szerkezet anyagtulajdonságait vizsgáltuk. A helyenkénti eltérések miatt indokolt lenne a gyártó cégnek különbséget tennie az alapanyag és a 3D nyomtatóval gyártott test anyagtulajdonságai között, mivel az anyagot vásárló felhasználó számára inkább az utóbbi a lényeges.

IRODALOM

- Dong BK, In HL, Hae YC. A study on mechanical properties of additive manufactured polymer materials. Transactions of the Korean Society of Mechanical Engineers 2015; 39(6):773-80.
- Vega V, Clements J, Lam T, Abad A. The effect of layer orientation on the mechanical properties and microstructure of a polymer. Journal of Materials Engineering and Performance 2011; 20(6):978–88.
- Barclift MW, Williams CB. Examining variability in the mechanical properties of parts manufactured via polyjet direct 3D printing. 23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference 2012; 876-90.
- Ficzere P, Borbás L. Gyors prototípus anyagok orvosi alkalmazásának lehetőségei, kérdései. Korszerű anyagok és gyártástechnológiák alkalmazása a gyógyászatban 2014; 17.

- Borbás L, Ficzere P. Kérdőjelek az additív gyártástechnológiákban (maradó feszültségek polimerek nyomtatásakor). GÉP 2017; 68(2):5-10.
- Borbás L, Ficzere P. Additív gyártástechnológiák: lehetőségek és kérdőjelek. ACTA PERIODICA EDUTUS 2016; 11:30-44.
- Borbás L, Ficzere P, Szebenyi G. Reduction possibility of residual stresses from additive manufacturing by the optical photostress method. 33rd Danubia Adria Symposium on Advances in Experimental Mechanics: Book of Abstracts 2016; 205.
- Ficzere P. Optikai feszültségvizsgálati lehetőségek 3D nyomtatással előállított vizsgálati réteg segítségével. MŰSZAKI SZEMLE (EMT) 2016; 68:3-7.

- 9. *Ficzere P.* Gyors prototípus numerikus és kísérleti szilárdsági analízise 2014.
- Ficzere P. Gyors prototípus termékek tulajdonságainvak meghatározása numerikus vizsgálatokhoz. 60 éves a Közlekedésmérnöki és Járműmérnöki Kar 2011; CD kiadvány.
- PolyJet Materials Data Sheet. Available from: URL: http://usglobalimages.stratasys.com/Main/ Files/Material_Spec_Sheets/MSS_PJ_PJMaterialsDataSheet.pdf?v=635785205440671440
- 12. *Digital Materials Data Sheet*. Available from: URL: https://www.padtinc.com/downloads/Stamp%20 Digital%20Materials_Datasheet-08-13.pdf

Jelölések jegyzéke AM - Additive Manufacturing FDM - Fused Deposition Modeling SLA - Sztereolitográfia 3DP - 3 Dimensional Printing ISO - International Organization for Standardization ASTM - American Society for Testing and Materials

A projekt a Nemzeti Kutatási és Innovációs Hivatal támogatásával az NKIH Alapból valósul meg, a projekt címe: Egyénre szabott orvos-biológiai implantátumok és segédeszközök új generációs gyártási folyamatának kidolgozása additív technológiákra; a pályázat azonosító száma: NVKP_16-1-2016-0022.

A kutatás a GINOP-2.3.2-15-2016-00022 azonosító számú, 3D nyomtatási és vizualizációs technológiákat alkalmazó interdiszciplináris kutatási, oktatási és fejlesztési központ kialakítása a Pécsi Tudományegyetem című projekt támogatásával valósult meg.

Parragh Márk

Budapesti Műszaki és Gazdaságtudományi Egyetem, Mechatronika, Optika és Gépészeti Informatika Tanszék H-1111 Budapest, Bertalan Lajos u. 4-6.

Tel.: (+36) 20 438 9166