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Abstract
This paper presents the application of the Dynamic Time Warping (DTW) algorithm in the anal-
ysis of human functional movements in activities of daily living (ADLs). Dynamic Time Warping 
was originally developed for automatic speech recognition, though the method has been adopted 
by several fi elds of biomechanics. As a part of the post-stroke rehabilitation project COSMOSYS, 
the aim is to quantify the ADL performances of hemiparetic subjects, hence to be able to track 
their progress during physiotherapy.
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Introduction

Dynamic Time Warping in automatic speech 
recognition is used to measure the similarity of 
two audio sequences, which may vary in time 
and speed. The sequences are warped non-
linearly in the time dimension to determine 
the „score” of their similarity independent of 
certain non-linear variations in pace. The se-
quences are warped non-lin-early in the time 
dimension to determine the “score” of their 
similarity independent of cer-tain non-linear 
variations in pace for various applications of 
DTW.1–6 The rehabilitation of hemiparesis 
after stroke demanded a comparison method 
that is able to express the correlation of two 
data sets. The aim is to evaluate the measured 
human functional movements also called 
Activities of Daily Living (ADLs), i.e. to qual-
ify those with a single scalar. The difference 
of the measured and the reference ADL data 
sets can be used to evaluate the patients’ per-
formance.

The present approach bridges the gap between 
the objective sensory information available on 
normal and pathological human movements 
on one side and the subjective qualitative eval-
uation of these motions by the skilled profes-
sional in the form of performance scales on the 
other side. While the latter have already been 
standardized among clinical professionals, the 
error of human motion cognition by objective 
evaluation is still remarkable: evaluation of hu-
man movements may differ due to the imper-
fection of human cognitive capabilities, or sim-
ply from training, practice, institution, location 
and nationality of the clinical professional. The 
error can be radically reduced by the proposed 
co-iterative analytical-statistical method. Feed-
ing of the DTW metrics into the robot control-
ler makes the robot driven physiotherapy bio-
medically determined. In present approach the 
DTW metrics have been produced from mea-
surements by 3D motion analyser whereas the 
robot can measure the same parameters from 
their integrated sensors: the motor encoders.
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ADL Measurements

The ADLs to be measured on both healthy 
and post-stroke patients were selected by thera-
pists of the Hungarian National Institute for 
Medical Rehabilitation, and the Singaporean 
Tan Tock Seng Hospital.
These ADLs are the following:
–  picking up a phone from the table and plac-

ing it back; 
–  picking up a mug by its handle, moving it to 

the mouth and placing it back onto the table; 
–  opening and closing a window by its handle; 
–  picking up a towel, moving it to the face and 

placing it back; 
–  doing and undoing a zipper on a vest.

Measurement Device

The motion capture device, shown in Figure 1, 
consists of the Smartsuit and the Smartglove, 
developed in Nanyang Technological Univer-
sity, Singapore. Smartsuit is an IMU (Inertial 
Measurement Unit) based motion analyser 
for measuring upper arm and lower arm ori-
entations. Smartglove acquires fi nger fl exion-

extension and palm orientation, by using 
optical encoders and an IMU. Finger fl exion-
extension data were excluded in the data min-
ing analysis.

The pose of the hand is described by the fea-
ture vector f

s e w

, that is 

� �Ts s s e w w w, , , , , ,� � � � � � ��f
s e w

 (1)

which contains the anatomic angles of the 
shoulder, elbow and the wrist. The defi nitions 
of these anatomic angles were inherited from 
the “Jack” human simulation software by Sie-
mens PLM. The three IMUs in the Smartsuit 
and Smartglove provide the spatial orientations 
(roll, pitch, yaw) directly for the upper arm, 
lower arm and palm, while anatomic angles 
can be calculated afterwards. Figure 2 illus-
trates the coordinate system and the reference 
points (S, E and W) on the arm. For a given 
length of the upper arm (

s e w

UAL ), lower arm (

s e w

LAL ) 
and palm (

s e w

PL ), the coordinates of the reference 
points can be calculated as follows:

s e w

s s s 0
SE y x z SE

� � �	 	�r T T T r , (2)

s e w

� �s s s e 0 0
SW y x z y EW SE

� � � �	 	 	� 
r T T T T r r , (3)

Figure 1. ADL measurement 
1: data acquisition software; 2: Smartsuit; 

3: Smartglove; 4: ADL items

Figure 2. Base coordinate system 
and reference points on the human arm
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s e w

��s s s e w w w 0
SP y x z y z x y WP

� � � � � � �	 	 	 	 	� 
r T T T T T T T r ,

s e w

� �0 0
EW SE
 
r r  (4)

where 

s e w

0 T
SE UA(0,0, )L� 	r , 

s e w

0 T
EW LA(0,0, )L� 	r , 

s e w

0 T
WP P(0,0, )L� 	r , with superscript 0 referring 

to the initial state, and 

s e w

x
�T , 

s e w

y
�T , 

s e w

z
�T  are the rota-

tion matrices with superscripts referring to the 
angle of rotation about the corresponding axes 
noted in the subscripts. 

Dynamic Time Warping

A wide-spread method for computing the sim-
ilarity between two time series is the Dynamic 
Time Warping algorithm, which is based on the 
alignment of signifi cant patterns by locally de-
forming the time axis (hence the name warp-
ing) in order to minimize the cumulative dif-
ference between the aligned points. In order to 
obtain the optimal alignment, local compres-
sions and shifts are achieved, thus, the method 
is suitable for matching time series containing 
patterns that are qualitatively similar but have 
different lengths and paces.1

Defi nitions

The inputs of the DTW algorithm are two 
data sequences, not necessarily containing 
the same number of samples. Let these se-
quences be noted by I I I I

1( ,..., ,..., )i n�F f f f  and 
II II II II

1( ,..., ,..., )j m�F f f f , where I
if , II

jf  R q for 
[1, ]i n� , [1, ]j m�  and q is the dimension of 

the feature space. The outputs are the warp-
ing curve ( I� , II� ) and the DTW distance 
 , 
where I� =( I

1� ,…, I
k� ,…, I

K� ) and II� =( II
1� ,…, 

II
k� ,…, II

K� ). These vectors contain the sample 
indices of IF  and IIF  that should be selected to 
obtain the optimal fi t ( I� , II�  ZK). In order 
to calculate the warping curve, the constrained 
minimization problem 

� � I II

I II

, 1
, arg min

K

k� � �

� � � � D � �I II
I II,
k k� �

f f  (5)

should be solved where D is the scalar-valued 
penalizing function that represents the dis-
tance between two feature vectors as detailed in 
(1). Several different sets of constraints can be 
found in the literature1 for the warping curve 
( I� , II� ). In this study, the following set is ap-
plied:
–  asymmetric start-point constraint: I

1� =1 
and/or II

1� =1,
–  end-point constraint: I

K� =n and II
K� =m,

–  monotonicity: I I
1k k� �
 �  and II II

1k k� �
 � .
Following the determination of I� , II� , the 
DTW distance 
  is calculated as follows: 

1

K

k



�

�� D � �I II
I II, .
k k� �

f f  (6)

Comparison of Arm Postures, Penalizing 
Function

The similarity of two samples (i.e. feature 
spaces) can be quantifi ed by evaluating the pe-
nalizing function D ( I

if , II
jf ). As shown in (1), 

the feature vector of a sample contains the ana-
tomic angles of the shoulder, elbow and wrist:

� �TI I I I I I I I
s s s e w w w, , , , , ,
i i i i i i ii � � � � � � ��f  (7)

� �TII II II II II II II II
s s s e w w w, , , , , ,
j j j j j j jj � � � � � � ��f  (8)

The penalizing function is defi ned by

D � � � �I II I II I I
v 1
1,i j i j i iP
� 
� 	 
 	 	f f f f f f

� �II II
1j j
	 	f f  (9)

I II

h I II

·
1 i j

i j

P
� �
� �
 	
� �
� �

f f
f f

where � is the sampling time, while Pv and Ph 
are weight parameters of the penalizing func-
tion for velocity and angle differences, respec-
tively. The last term for the angle difference 
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represents 1–cos, where  is the angle be-
tween the two feature vectors, which calculated 
by their scalar product. 

In most of the automatic speech recognition 
applications the penalizing function consists 
only of the angle term, since the amplitude, 
i.e. the volume of the speech is not considered 
to increase or decrease the difference between 
two input sequences. Contrarily, in our case 
the feature vectors are containing the anatomic 
angles and/or anatomic positions of the human 
arm, therefore the Euclidean distances cannot 
be neglected, moreover, jerky motion (opposite 
to smoothly performed ADLs) has to be penal-
ized by means of the term for velocities.

Computing the optimal alignment

In the fi rst step, the calculation of the opti-
mal alignment begins with the comparison 
of each sample I

if  to all other samples II
jf , and 

the results obtained by the evaluations of the 
penalizing function are stored in matrix Mij=
D ( I

if , II
jf ). Due to the term of the velocity 

differences, the last samples in each data sets 
cannot be used in the fi rst and third term of 
the penalizing function (9), [1, 1]i n� 	 , 
[1, 1]j m� 	 . Matrix M is illustrated in Figure 

3, in case of the comparison of two healthy 
subjects performing the same ADL (measured 
data shown in Figure 5, left column). 

Figure 3. 
Illustrating matrix M,
for the comparison of 
data shown in Figure 5, 
see colorbar 
on the left for 
the values of each 
matrix element

Figure 4. 
Illustrating matrix C 
and the optimal time 
warping, in case 
of the comparison 
of data shown 
in Figure 5, 
see colorbar 
on the left for 
the values of each 
matrix element
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Following the calculation of matrix M, the cu-
mulated matrix C should be determined. Each 
element ijC  of matrix C represents the least 
possible sum of those elements of M, on which 
a step is taken when considering all the steps 
along the possible paths that connect elements 

11M  and ijM  fulfi lling all the constraints list-
ed in 3.1 including the monotonicity one (see 
Figure 4). The bottom right corner element of 
C defi nes the DTW distance 
 .

Results

Comparison of ADL Performances

Figure 5 and 6 illustrate the results of two 
DTW analyses. In Figure 5 the comparison of 
two healthy subjects (person A solid line and 
person B dashed line) is shown; both subjects 
are performing the same ADL, opening and 
closing a window. As it can be seen from the 

original measurement data (shown in the left 
column), there is a signifi cant difference in 
the paces of the functional movements. Per-
son A fi nishes in cca. 5 seconds, while person 
B needs cca. 10 seconds to complete the move-
ment. The right column of the fi gure presents 
the aligned, that is the warped data in case of 
the optimal alignment (for penalizing param-
eters Pv=25 and Ph=10, the resulted DTW dis-
tance is AB
 =1851).

The comparison of a healthy (person A, solid 
line, same as in Figure 5) and a stroke affected 
(person C, dashed line) subject’s ADL perfor-
mances is shown in Figure 6. Though person 
C completes the function movement within 
roughly the time as person B, the DTW differ-
ence between A and C is signifi cantly greater 
( A
AC=3923) than between A and B, hence 
this difference is induced by the variance 
in the measured anatomic angles (note that 

A
BC=2661).

Figure 5. Comparison of two healthy ADL 
performances, person A solid line 

and person B dashed line, AB
 =1851

Figure 6. Comparison of a healthy and a stroke 
affected ADL performance, person A solid line 

and person C dashed line, A
AC=3923
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Multidimensional Scaling Method

Following the determination of the DTW dis-
tances for all possible dataset-pairs, multidi-
mensional scaling (MDS) is a commonly used 
method for visualizing the level of similarity of 
individual cases.7 In this study, classical MDS 
method8 is used. For a given distance matrix 
D that contains the pairwise differences of in-
dividual objects, MDS algorithm aims to place 
each object in an N-dimensional space such 

that the between-object distances are preserved 
as well as possible. Therefore, the difference 
matrix does not need to be an Euclidean dis-
tance matrix.

Scatter Plots of ADL Measurements

Since the DTW algorithm can produce such 
pairwise distances, that does not even obey the 
triangle inequality, MDS method is needed to 
optimize object locations for a two-dimension-

Figure 7. Scatter plot of ADL 1 performances 
(picking up a mug)

Figure 9. Scatter plot of ADL 3 performances 
(picking up a towel)

Figure 8. Scatter plot of ADL 2 performances 
(picking up a phone)

Figure 10. Scatter plot of ADL 4 performances 
(opening and closing a window)
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al scatter plot. These scatter plots are presented 
for all the 5 ADLs in Figures 7–11. In these 
fi gures solid discs represent healthy subjects, 
and squares represent the hemiparetic sub-
jects, solid lines connect left and right hands 
of each stroke affected patient. By tuning Pv 

and Ph parameters in the penalizing function 
(9), two clusters had been evolved in the scatter 
plots. One contains the performances regard-
ing both arms of healthy subjects and the non-
paretic arm of hemiparetic subjects, and the 
other cluster is built up by the paretic arms of 
the stroke affected subjects.

Conclusions

According to the presented results, the perfor-
mance of a post-stroke patient can be quanti-
fi ed as its distance from the cluster consisting 
of the reference ADL performances, i.e. the 
rehabilitation progress can be tracked by on 
objective, sensory based scale, lacking the pos-
sible errors due to human motion cognition. 
Due to the authors expectations, in the future 
standardized clinic scales, such as Fugl-Meyer, 
Asworth, Barthel, can be aided by DTW met-
rics. In order to achieve a good correlation with 
clinic scales, further evaluations are needed in-
volving clinical professionals.

REFERENCES

1.  Tormene P, Giorgino T, Quaglini S, Stefanelli M. 
Matching incom plete time series with dynamic 
time warping: an algorithm and an application to 
p ost-stroke rehabilitation. Artifi  cial Intelligence 
in Medicine 2009;45:11-34.

2.  Rath T, Manmatha R. Word image matching us-
ing dynamic time warping. Manmatha R, editor. 
Proceedings of the IEEE computer society con-
ference on computer vision and pattern recogni-
tion vol. 2; Los Alamitos, CA. USA: IEEE Com-
puter So ciety; 2003. p. I I-521-7.

3.  Tuzcu V, Nas S. Dynamic time warping as a novel 
to pattern recognition of ECG changes in heart 
rhythm disturbances. Jamsh idi M, Johnson M, 
Chen P, editors. Proceedings of the IEEE in-
ternational conference on systems, man and cy-

bernetics vol. 1; Los Alamitos, CA. USA: IEE E 
Computer Society; 2005. p. 182-6.

4.  Brina CD, Niels R, Overvelde A, Levi G, Hulstijn 
W. Dynamic time warping: a new method in the 
study of poor handwriting. Human Movement 
Science 2008;27(2):242:55.

5.  Wu H, Kido R, Shioyama T. Improvement of con-
tinuous dynamic programming for human ges-
ture recognition. Proceedings of the 15th inter-
national conference on pattern recognition vol. 
2; Los Alamitos, CA. USA: IEEE Computer So 
ciety; 2000. p. 945.

6.  Gollmer K, Posten C. Supervision of bioprocesses 
using a dynamic time warping algorithm. Con-
trol Engineering Practice 1996;4(9):1287:95.

Figure 11. Scatter plot of ADL 5 performances 
(doing and undoing a zipper)



Biomechanica Hungarica VII. évfolyam, 2. szám

5454

O
R

IG
IN

A
L

 A
R

T
IC

L
E

S

7.  Borg I, Groenen P. Modern multidimensional 
scaling: theory and applications. 2nd ed. New 
York: Springer; 2005.

8.  Seber GA. Multivariate observations. Hoboken, 
NJ: John Wiley and Sons, Inc., 1984.

This work was supported in part by the Agency for Science, Technology and Research, Sin-
gapore, under SERC Grant 092 149 0082 and the Media Development Authority, Singa-
pore under NRF IDM004-005 Grants, project name COSMOSYS, and the Hungarian grant 
TÉT_08-SG-2010-0002.

Bálint Magyar
Budapest University of Technology and Economics, Faculty of Mechanical Engineering, 
Department of Applied Mechanics 
H–1111 Budapest, Műegyetem rkp. 5.
Tel.: (+36) 1 463-1436


